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To make Jauch's approach more realistic, his assumptions are modified in two 
ways: (1) On the quantum system plus the measuring apparatus (S+ MA) after 
the measuring interaction has ceased, one can actually measure only operators 
of the form A | ~k bk Qk, where A is any Hermitian operator for S, the resolution 
of the identity ~.k Ok = 1 defines MA as a classical system (following von 
Neumann), and the b k are real numbers (S and MA are distant). (2) Measurement 
is defined in the most general way (including, besides first-kind, also second-kind 
and third-kind or indirect measurements). It is shown that Jauch's basic result 
that the microstates (statistical operators) of S + MA before and after the collapse 
correspond to the same macrostate (belong to the same equivalence class of 
microstates) remains valid under the above modifications, and that the sig- 
nificance of this result goes beyond measurement theory. On the other hand, it 
is argued that taking the orthodox (i.e. uncompromisingly quantum) view of 
quantum mechanics, it is not the collapse, but the Jauch-type macrostates that 
are spurious in a Jauch-type theory. 

1, I N T R O D U C T I O N  

To  p r e s e n t  the  p r o b l e m  o f  the  q u a n t u m  t h e o r y  o f  m e a s u r e m e n t  a n d  

J a u c h ' s  a t t e m p t  at a s o l u t i o n ,  we  take  the  usua l  d y n a m i c a l  m i n i m o d e l  fo r  

f i r s t -k ind m e a s u r e m e n t  [ e s sen t i a l l y  in J a u c h ' s  n o t a t i o n ;  cf. J a u c h  (1964, 

1968)].  

T h e  s ta te  space  ~ o f  the  q u a n t u m  sys tem I is t w o - d i m e n s i o n a l ,  a n d  

we  m e a s u r e  an  o b s e r v a b l e  tha t  is g iven  in spec t ra l  f o r m  as 

a,=a+]q~+)(~+l+a_l~o_)(~p_l, a + ~ a ,  a ~ c R l  

T h e  s ta te  space  Ygn o f  t he  m e a s u r i n g  a p p a r a t u s  (ob jec t  I I )  is th ree -  

d i m e n s i o n a l ,  a n d  the  m e a s u r i n g  o b s e r v a b l e  ( the  " p o i n t e r " )  is in spec t ra l  
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form 

B,, = bol Oo>(,pol + b+l,p+)(4,+] + b-I O->(,P-[ 

b o # b + # b  , bo#b_, bo, b ~ R 1  

The evolution operator U of the composite system I+  II (giving the 
dynamical basis of the measurement) is assumed to take the initial state 
[~o~)[Oo) with the sharp value a~ of A~ into 

If the object I is in a pure state that is a superposition 

a+lq~+) + a_[r a + ~ O # a ,  [a+l=+la_lU = 1 

then, due to the linearity of the tensor product and of U, one obtains 

u(,~+l~+) + ~-I~-))1 g,o) = ,,+1~+)10+) + ~-I~-)l ~-) (1) 

However, it is not the pure state (1), but the mixed state 

I o'+I2I'p+)(,~+I @ I r 0+1 + I o ' - I%-)(~-I  @ I O-)(r (2) 

that expresses the fact that in a fraction I~12 of the ensemble of I + I I  
systems the "pointer" takes the "position" b• How does the transition 
from (1) to (2), the so-called collapse [or process 1 in the original von 
Neumann terminology; cf. Chapter V in von Neumann (1955)] come about? 
This is the problem of the quantum theory of measurement. 

As a contrast, let me state concisely the position that Niels Bohr took, 
as I understood it. In free formulation, his attitude can be given the form 
of two stipulations (Bohr 1949, 1963): 

1. Every measurement has to be performed by using a classical measur- 
ing apparatus (MA). 

2. The behavior of a classical MA during the measurement process 
should be described by classical physics. An attempt at a deeper 
quantum description of the MA and the interaction with it would 
be meaningless because human beings are doomed to understanding 
Nature via classical physics. 

This attitude, accepted by the entire Copenhagen school of thought, 
represents a n alternative to the above quantum theory leading to (1) [due 
to von Neumann, (1955)], and it does not lead to a problem. But Bohr's 
view actually fails to give insight into the way the measurement results come 
about, and they are the only statistical elements of quantum mechanics. 
Hence, this approach is unsatisfactory for many physicists (including, 
besides von Neumann and Jauch, the present author). 
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In von Neumann's alternative leading to (1) there is the well-known 
possibility of regression (another MA measures Bn, etc.), arriving at the 
ultimate observer: the human consciousness. According to von Neumann, 
it is the latter that is the ultimate source of the collapse (von Neumann, 1955). 

Jauch finds von Neumann's  conclusion unacceptable (Jauch, 1964, 
1968). In his search for a loophole in von Neumann's theory, he takes resort 
to Bohr's stipulation 1, but without (2). In doing so he assumes that classical 
variables are actually compatible quantum mechanical observables. 

According to Jauch, the statement that the quantum system II (the 
MA) is a classical object means that actually nothing but a set O c of 
compatible observables can be measured on it. 

At this point, Jauch makes an important observation concerning the 
general case when only a limited set O' of (not necessarily compatible) 
observables is actually measurable on a quantum system. Then, not every 
two statistical operators p and p' can be distinguished by measurement. In 
other words, an equivalence relation - is introduced in the set S of all 
statistical operators: 

p~p ' ,  p ,p 'cS ,  i fVA~O ' :  T r A p = T r A p '  (3) 

(If  O' is replaced by O, the set of all Hermitian operators, then - in (3) 
becomes the equality.) 

Subsequently, Jauch derives in a straightforward way the following 
result. 

Theorem 1. The quotient set S / ~ ,  in which the equivalence classes of 
statistical operators obtained via (3) are the elements, is a convex set, the 
convex combinations of which are performed through arbitrary class rep- 
resentatives. 

This means that if C1, C2, . .  �9 c S / - ,  and wl > 0, w2 > 0 . . . .  , ~i wi = 1, 
then also Y~i w~Ci ~ S / - ,  and taking arbitrarily pl c C1, p2 ~ C2 , . . . ,  ~i wiC~ 
is the equivalence class to which ~i w~p~ belongs. 

Jauch calls the classes macrostates, in contrast to their elements, which 
he calls microstates. 

Let us return to the measurement problem. As mentioned, according 
to the Jauch definition of  a classical object, on the MA (system II) only a 
set O c of commuting Hermitian operators can be measured. It is now the 
leading idea of Jauch to obtain macrostates of I + I I  via (3) such that the 
microstates (1) and (2) are elements of the same macrostate. 

Jauch takes for his O' set in application to I - I I  the observable 

al ,n ~ I~+)<~+l | I ~0+>< ~§ -I~-><~-I | I q'->( O-I (4) 

and all its functions, and he obtains the desired basic result that (1) and 
(2) belong to the same macrostate. Thus, Jauch concludes, the gap between 
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(1) and (2) is bridged, i.e., one has gained an unders tanding of  how the 
collapse comes about:  it turns out to be a spurious effect. 

We are going to be concerned with three objections to Jauch ' s  theory. 
The first comes from Jauch  himself. At the end of  his paper  (Jauch, 1964), 
he makes the following remarks:  

In order to assert this result in full generality, the analysis carried through in 
this paper for a special case should be generalized and refined in several 
directions. One should extend it to an observable with more than two values, 
and one should also allow the possibility of a degenerate spectrum for the 
observed quantity. Then one should take into account that both systems I and 
II could be in a mixture before measurement begins. Furthermore, one should 
also include the case of continuous spectra. Finally, the discussion should then 
be extended to measurements of the second kind. Only then could we make 
these assertions in full generality. 

The second and more  important  objection is leveled against the way 
in which Jauch  introduces the classicalness o f  the M A  in applicat ion to the 
microstates (1) and (2) o f  I + I I ,  i.e., against the above set O '  generated by 
(4). It discards in an unjustified way a number  o f  important  observables 
that certainly can be measured on I + II  (e.g., all subsystem observables of  I). 

In  the next section a physical  argument  is given on how to replace 
Jauch 's  incorrect Abelian set O '  o f  actually measurable  Hermitian operators  
on I + I I  by a correct non-Abel ian  set O|  In Section 3 we define 
general measurement ,  classifying it into first-, second-,  and third-kind 
measurements.  In Section 4 it is proved that Jauch 's  basic result remains 
valid under  the ment ioned  restriction to O|  for general 
measurement .  

In the last section the results o f  this study and Jauch ' s  approach  are 
critically examined,  and the third objection against the Jauch  theory is 
raised. Whether  the t h e o r y  is also capable o f  answering this challenge is 
not settle in this paper.  

2. T H E  O P E R A T O R S  M E A S U R A B L E  ON T H E  S Y S T E M - P L U S -  
A P P A R A T U S  AFTER T H E  M E A S U R E M E N T  

The set o f  all measurable  operators on the quan tum system plus M A  
(S+  MA) after the measurement  must  contain all subsystem operators  for 
S, because S is quantal,  and it must  not  contain any subsystem opera tor  B 
for the M A  other  than B ~ O C, because the M A  is classical. One wonders  
if there exists any reasonable set fulfilling these condit ions that would give 
a less unrealistic Jauch- type theory. The answer is affirmative if one takes 
resort to distant correlations. 

When the interaction between the quan tum system I and the MA (object 
II)  that leads to the measurement  ceases, then subsystems I and II  are 
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separated and become distant systems. This means that they are far enough 
from each other so that not only can they no longer interact, but also that 
one can at best perform coincidence subsystem measurements on them [cf. 
the last section in Vuji~i6 and Herbut (1984)]. Hence, O, the set of all 
Hermitian operators in ~ |  ~H, the state space of the composite system, 
is restricted to O | O c containing all Hermitian operators of the form A | B, 
where A is any Hermitian operator in WE, and B is an element from some 
set O c of  commuting Hermitian operators characterizing the MA. The set 
O |  c seems to be the correct set of all measurable operators in the final 
state of the S + MA system. 

Let S be the set of all statistical operators p in ~ |  Jauch's 
procedure with O |  O c leads to the quantum macrostates that are elements 
of S / - ,  where the equivalence relation - is defined by O | O c through (3). 

Jauch does not specify his Abelian set O c of measurable operators on 
the MA in more detail. In practice, one actually deals with a finite number 
of classical variables (coordinates and linear momenta, e.g.) and with their 
functions in a classical description. Therefore, it seems reasonable to assume 
that O ~ also contains a finite number of commuting Hermitian operators 
and all their functions. Besides, the operators from O C have pure discrete 
spectra due to the necessarily positive margins of error in measurements 
with classical instruments (von Neumann, 1955, p. 221). Von Neumann 
(1955, p. 174) shows that there exists a Hermitian operator, say Bo, with a 
pure discrete spectrum such that the above operators are its functions. 

We call Bo the basic observable of object II, and we give after yon 
Neumann, the following definition of the fact that object II is classical: the 
set of all measurable Hermitian operators OC(B0) in ~H consists of Bo and 
of  all its functions that are Hermitian operators. 

Let the spectral form of  the basic observable be 

B0 = ~ b~ k ~ k ' ~ b ~  ~ (5) 
k ~ K  

where K is an at most countabley infinite set, and Qk are the eigenprojectors 
of Bo. The set K plays the role of an index set in (5), but essentially one 
has in mind the set of events {Qk: k c K}, each element of which is effectively 
an elementary event (atom) for the classical instrument (though the eigen- 
values b ~ are, in general, degenerate). 

Thus, defining 

O~(B~ bkQk: Herm'~ Zk~K Q k = l f i x e d }  (6) 

we henceforth utilize von Neumann's above definition of a classical object. 
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Remark 1. Evidently, the Jauch method (3) of deriving macrostrates 
gives the same equivalence relation in S in ~ u  with OC(Bo) defined by (6) 
as with { Qk : k e K }. 

3. THE DIFFERENT KINDS OF QUANTUM MEASUREMENTS 

If Ao is any given Hermitian operator in ~r ,  then, due to the spectral 
theorem, one has 

Ao= _ AdE(A) 

where E(A) is the spectral measure (corresponding to A0) of the interval 
(-oo, A], and the rhs is a Stieltjes integral (Jauch, 1968; yon Neumann, 
1955). To evaluate it one can take a natural number n, break up the real axis 

select arbitrarily 

hk \ n nJ 

then take two more natural numbers K and L and construct 

A(n ,K,L)  =- ~ A k E ( k - 1 ,  k]  
k=-k+l \ n n /  

Then 

f ~  h dE(A)= l im  A(n, K, L), n ~ ,  K --> oo, L--> oo 

(7) 

It is one of the tasks of the mathematics of the spectral theorem to 
prove that the threefold limit exists independently of the order of the limiting 
processes and independently of the arbitrary steps taken in constructing 
A(n, K, L). 

Any MA actually measures an observable like A(n, K, L) that has a 
pure discrete and finite spectrum. Yon Neumann's MA encompasses an 
infinite spectrum of Ao in the general case (yon Neumann, 1955, p. 220). 
This seems to be an unnecessarily gross idealization. It corresponds to an 
infinite double sequence {A(n, K, L): K->oo, L o  oo}. 

The exact measurement of A(n, K, L) is an approximate measurement 
of Ao, and the approximation can be made arbitrarily good by selecting 
large enough n, K, L. If Ao has a continuous spectrum, it is already taken 
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care of  by the universality of  the spectral theorem. The separate points of  
the continuous spectrum cannot be measured anyway due to the positive 
margin of error of  every measuring instrument (von Neumann,  1955, p. 221). 

When a quantum state pi is given and we want to measure Ao in it 
with a certain precision, we choose A(n, K, L) with n large enough to suit 
the desired margin of error, and K and L large enough so that the part  of  
the spectrum of Ao having nonzero probabili ty in Px is (approximately) 
incorporated in the interval ( - K / n ,  I /n] of A(n, K, L) [cf. (7)]. In practice, 
the described choice of  A(n, K, L) amounts to the choice of  a suitable MA 
(see below). 

We drop n, K, L in A(n, K, L), and we rewrite (7) as follows: 

M M 

A= ~ amPm, m ~ m ' ~ a m ~ a ' ,  ~ P m = l  (8) 
m = l  m = l  

(if am = 0 appears in the spectrum of A, it is among the M terms). 
In the state space ~ 1  of the MA a measuring observable (the "pointer")  

Bp is defined such that the spectrum of A and part of  that of  Bp are in a 
fixed correspondence (same index m): 

M 

Bp -" ~ bmQm (9) 
m = l  

all bm distinct and nonzero. The eigenvalues bm are the "posit ions" of  the 
"pointer ,"  and the occurrence of Qm means that the "pointer"  has "taken 
up the posit ion" bin, i.e., it "shows" the result am for A (in direct measure- 
ment; see below). 

We are now equipped to define the three kinds of  measurement.  Let 
p~O~ be an initial (in general) mixed state of  the MA. We assume that the 11 

(o). c~ ~(o)_ #o) Further, we MA has the initial "posi t ion" bm=o = 0 in Pri �9 "em=0~'H --~'H �9 
assume that the quantum system and the MA are brought into contact 
(begin to interact) at some initial instant to, when the composite state is 

, -~  (o)  P~ ~ P~I , - ~ being an initial state of  the quantum system. Let U~.~i(t - to) --- U 
be the evolution operator of  the composite system that describes the interac- 
tion of I and II  from to to a later instant t when the measurement is 
completed. At this instant we have the final state 

p = U(p,@p~ ~ U -1 (10) 

We are dealing with a measurement of the first kind, or a predictive 
measurement,  or a repeatable one if the following two conditions are 
satisfied: 

(i) The probabili ty distribution of the measured observable A in the 
initial state pi of  the quantum system and of the "pointer"  observable Bp 
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in the final composite state p determined by (10) coincide: 

TrlplPm=Trl,H(l| m = l , 2 , . . . , M  

(predictability). 
(ii) The probability distribution of A in p~ and of A in the final state 

p are equal: 

Trtp~Pm=Tr~,H(Pm| m = l , 2 , . . . , M  

(repeatability). 

If (i) is valid without (ii), then we have a measurement of the second 
kind or a retrodictive or a retrospective one. 

Evidently, (i) implies that if A has a sharp value am in Pl, then the 
"pointer"  Bp has the corresponding sharp value ("position") bm in p. This 
is why some early authors used the term predictability for requirement (i) 
(Landau and Peierls, 1931). In the same case if (ii) is also valid, then the 
sharp value of A remains sharp in p (this is why the measurement can be 
repeated and will give the same result). It is noteworthy that all this is 
meaningful for individual quantum systems and MAs. 

To define another kind of measurement, let us consider the following 
requirement: 

(iii) Let vm ~ Tri fll Pro, m = 1, 2 , . . . ,  M, be the initial probability distri- 
bution. We require that the final probabilities wm=--Tr~.Hp(l| also 

M 
form a probability distribution, i.e., that Y~,,=~ wm= 1. Further, we require 
that there exist a one-to-one map 

X: { v , ~ : m = l , 2 , . . . , M } - - > { w m : m = l , 2 , . . . , M }  

that is invertible. 
One should note that if (i) is valid, so is (iii), because then wm = v,,, 

m = 1, 2 . . . .  , M. If (i) and (ii) are not valid but (iii) is, then we have a third 
kind or indirect measurement, (First- and second-kind measurements are 
direct measurements.) 

A subsequent measurement of B, on p ("reading off" the results) 
should provide us with the win; the inverse map X -~ applied to these wm 
allows us to infer the required vm. [It was shown by Fine (1970) that map 
X boils down to a matrix characteristic of the MA.] 

One should note that measurement of the third kind is an ensemble 
measurement that has no meaning for individual systems. 

4. THE BASIC RESULT 

The question that concerns us in this study, and to which Jauch's theory 
was addressed in the first place, is the problem of collapse. Any of the three 
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kinds of measurement processes is not completed unless the collapse takes 
place, i.e., unless the final composite state p satisfies 

M 

p= ~ (l |174 (11) 
m = l  

for every initial state p~ of the quantum system on which measurement can 
be performed with the given MA. It was shown by Fine (1970) that there 
is no evolution operator U that would lead to p satisfying (11) in either of 
the three kinds of measurement. (In Fine's proof  the initial state p~0) of the 
MA is a pure state.) 

Returning to Jauch's approach, the relevant question is if the measuring 
observable Bp [cf. (9)] can be chosen in a reasonable way so that the lhs 
and the rhs of (11) belong to the same macrostate. (This is then tantamount 
to collapse in Jauch's theory.) 

Definition. We specify the "pointer" observable Bp on the MA given 
by (9) to be more than a function of the basic observable Bo = Y~k~ K bOQk" 

Theorem 2. Defining the classicalness of the MA in the manner of von 
Neumann, assuming that the composite state p of quantum system plus 
MA is distant (see Section 2 on both counts), and defining Bp as in the 

" "  ' " 1 M =  above Defimtton, one has that Jauch s basic resu_t that p and ~2,, , (1|  
Qm)p(1 | Qm) fall into the same equivalence class (macrostate) of S + MA 
is valid irrespective of the kind of measurement (first, second, or third) that 
via U (10) determines p. 

Proof According to Remark 1, it is sufficient to show that 

V k e K :  p'k~--Tr~,n(l| ( l |174 =Pk 
1 

where 

pk --- Tr,,,, (1 | 0k)p 

Due to the above Definition, one has V k ~ K :  QkOm=g(k~Km)Ok, m= 
1 , 2 , . . . ,  M, where Km -={k: b~= bin}, and g ( k c  Kin)= 1 if k~ K~ and =0  
otherwise. This entails Vk ~ K:  p~ =pk. [] 

It is noteworthy that the collapse in Jauch's sense [i.e., the falling of 
M 

p and of ~m=~(l|174 into the same equivalence class of 
macrostate] is obtained from the definition of a distinct relation between 
S and MA in p (see Section 2). No details of the measuring process [entering 
through U in (10) that determines p] play any role in the proof. It is also 
irrelevant which particular coarsening Y~k~K bPQk of Bo is the "pointer"  
observable. Hence, the significance of Theorem 2 goes beyond measurement 
theory. 
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Remark 2. If an object is defined as classical in the von Neumann 
manner, and a quantum system plus this object is in a distant microstate 
p, then, no matter how it has come into this state, the corresponding 
macrostate is a mixture of macrostates in each of which every classical 
variable bk that is a coarsening of the basic variable b ~ has a definite value. 

In view of Remark 2, one wonders what is the meaning of Theorem 2 
for measurement? The directly measured probabilities w,, -= Th,H (1 | Q,,)p 
have the required relation to v,, ~ Tri PmP~ (cf. Section 3) due to (10), i.e., 
due to the fact that the interaction between the quantum system and the 
MA establishes this relation between the wm and the Vm. The Jauch-type 
result (Theorem 2) explains the definite "positions" b,, of the "pointer" Bp 
(and the corresponding definite values am of A in first-kind measurement) 
via decomposition using not the convexity of microstates in S (in ~ |  YgH), 
but the convexity that prevails in S / - .  

5. CONCLUDING REMARKS 

1. One wonders if a Jauch-type theory of classical systems may have 
application also outside the quantum theory of measurement. First of all, 
there is the preparation of a quantum system in an initial state p~. It is a 
cornerstone of quantum mechanics. There we have the final product pi as 
a result of an interaction of a classical object (a laboratory arrangement, 
the preparator) with a quantum system. 

Then, there is the theory of molecules. "A fundamental problem of 
theoretical chemistry is the discussion of the interaction between quantum 
systems and classical systems" (Primas, 1983, Abstract). Among other things, 
certain symmetry-breaking structures (chirality, isomerism, etc.) appear in 
molecular ground states that do not follow from the dynamical equations 
of the quantum system (the molecule), but can be described by the introduc. 
tion of classical variables (Primas, 1983, Introduction). The concept of a 
Jauch-type macrostate may prove of some help in these problems. 

2. There seem to exist two misconceptions in the literature about the 
concept of collapse. 

(a) Some physicists seem to think that the "projection postulate" (the 
collaspse) is confined to minimal-disturbance, first-kind measurement (see 
Herbut, 1969, 1974), or even to von Neumann's original complete-observable 
measurement of this kind (von Neumann, 1955). In view of the fact that 
first-kind measurement is never typical in the laboratory, the problem of 
collapse then appears rather far-fetched, unnatural, and academic. Second- 
kind (individual system) measurement and third-kind (ensemble) measure- 
ment are typical in the laboratory, and the problem of collapse (into definite 
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"pointer position" conposite states) is here just as unavoidable as in first- 
kind measurement. Hence, the problem of  collapse is one of the very basic 
unsolved problems of quantum mechanics. 

(b) One gets the impression in reading the work of some physicists 
that the authors have the illusion that one can speak of "statistical predic- 
t ion" (which is the sole task of quantum mechanics, so one is told) without 
collapse. Even in a third-kind measurement, where the "pointer positions" 
bm have no meaning for the individual I + II systems (only the distribution 
wm gives indirect information on the measured observable A), one must 
count how many apparatuses give bm in the ensemble to observe the relative 
frequency yielding win. And for this the collapse is a necessary logical 
premise. 

3. One might say that most of the quantum theory of measurement 
writhes under the strain of  the two famous antipodes: Bohr's quantum 
mechanically untouchable classical measuring instruments [see his stipula- 
tion (ii) in the Introduction], and von Neumann's human consciousness as 
the ultimate observer. One wonders if this is also so for Jauch's macrostate 
approach. 

Jauch's approach with the von Neumann definition of a classical 
instrument taken in an absolute sense, i.e., if one believes that no observable 
outside OC(Bo) can be measured on subsystem II under any circumstances, 
is a consistent solution of the problem of collapse; and, as such, it is 
intermediary between the antipodes. It reminds one of the theory of Daneri 
et al. (1962) (DLP) in this respect. They derive the collapse from quantum 
ergodic theory. The latter seems to be kind of a counterpart of the yon 
Neumann definition of  a classical object. 

Incidentially, Bub has criticized the DLP work (Bub, 1968), and 
remarked that Bohr's position was consistent and did not require any 
derivation. Though true, this fact should not be held against the DLP theory, 
because in quantum measurement theory the aim is not to "cure" some 
inconsistency, but to replace one set o f  stipulations by another, a physically 
more plausible one. In this sense, DLP also seem to reject the second Bohr 
tenet (see the Introduction), keeping the first. 

4. Finally, the fundamental question concerning Jauch's approach has 
to be raised. Does it actually solve the problem of collapse? If yes, what is 
our reply to the following paradox. 

Let us return to the very simple example for the final state p given by 
the rhs of  (1). Let us have in mind two observers: a quantum one, who can 
measure any observable on subsystem II, and a classical one, who can 
measure only a proper subset of commuting Hermitian operators OC(Bo) 
on II (see Section 2). The collapse is the transition from (1) to the mixture 
(2) of some "pointer positions" b+ and some of them b_. Thus, the possibility 
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of decomposing (1) is gained due to the restricted measuring capabilities 
of the classical observer. But does this make sense?! The composite state 
(1) is pure or homogeneous. Having in mind an ensemble of composite 
systems I + II, this means that the ensemble contains no two subensembles 
that would differ regarding any observable in Y(~ | Ys And then, restricting 
oneself to the operators from O | 1 7 4  (cf.' Section 2), the 
homogeneous ensemble seems to become nevertheless decomposed into the 
definite "position" subensembles! 

There are two possible replies. 
(a) If we take the orthodox, i.e., uncompromisingly quantum, point 

of view, our answer must be: No, Jauch's approach does not solve the 
problem of collapse. The transition from (1) to (2) is only transformed 
away in it. It should not describe our laboratory experience because it is a 
spurious solution of a genuine problem. 

(b) If we are prepared to compromise with an extra quantum 
mechanical idea, such as "the quantum observer in the above paradox does 
not exist in Nature" (cf. point 3 above), then the paradox disappears, and 
out answer must be: Yes, Jauch's approach definitely solves the spurious 
problem of collapse, or rather it disposes of the redundancy in ~i| 
that leads to this apparent problem. This attitude appears to go from the 
orthodox point of view halfway toward Bohr's position. 

A careful reading of Jauch's work (1964, 1968) reveals that he believed 
that if we looked hard enough for an observable of quantum system II not 
compatible with the ones from OC(Bo), we would find one. Nevertheless, 
he did not seem prepared to go along with the conclusion under (a), if for 
no other reason then because we do see the definite "pointer positions" in 
o u r  laboratory experience. This experimental fact suggests that Jauch's 
approach is in the right direction. But it has more methodological than 
foundational significance. 
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